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Abstract

Current methods for atmosphere and ocean data
assimilation propagate Gaussian distributions for
gridded state variables forward in time. Powerful
as these methods are, they do not handle outliers
well and cannot simultaneously entertain multiple
hypotheses about system state. The alternative
of propagating the system’s full probability density
function (pdf) is computationally impractical.

Ensemble methods have been introduced into
data assimilation for nonlinear systems as a
compromise between the compact Gaussian
parameterization and a gridded representation of
the full pdf.

By propagating an ensemble of representative
states, algorithms like the Ensemble Kalman
Filter (EnKF) and the Resampled Particle Filter
(RPF) rely on existing modeling infrastructure
and capture the weights to be assigned to the
state estimate based on the compatibility of an
ensemble member with observed data.



We present an ensemble-based smoother that is
applicable to Monte Carlo filtering schemes like
the EnKF and the RPF. The algorithm does not
require retrospective adaptation of the ensemble
members themselves, and is thus suited to a
streaming operational mode.

At the minor cost of retrospectively updating a
set of weights for ensemble members, this
smoother provides superior state tracking for two
simple nonlinear problems, the double-well
potential and the trivariate Lorenz system.

The accuracy of the proposed backward-update
scheme in estimating non-Gaussian distributions is
evaluated by comparison of its posteriors with
ground truth provided by a Markov chain Monte
Carlo (MCMC) algorithm.



Conclusions

e Inability to capture non-Gaussian posterior
distributions is a handicap to conventional data
assimilation practice.

e Particle-based methods — filters and smoothers
— can overcome this limitation. Comparison with
MCMC ground truth shows that particle methods
can closely approximate the true posterior mean
and variance in highly nonlinear systems.

e [ hese ensemble-based methods are compatible
with conventional forecasting data flows.

e T[he same smoothing methodology can be
applied at minimal cost to reweight both EnKF
and particle filter ensembles.

e Reweighting significantly reduces mean
squared error in comparison with filters.

The research described in this poster was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration (NASA).



Ensembles for Data Assimilation

Approaches for data update (Bayes' Rule):

Ensemble Kalman filter (EnKF) where Gaussian
distribution is assumed.

Gaussian mixture where the distribution is sum of
multiple Gaussian functions to handle multi-modal
dynamics.

Particle filter where each sample is its value and
probability {x§”>, p§”)}
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Horizontal: state value. Vertical: relative probability.



Particle Smoother

We seek the conditional pdf p(x¢|Yy) of the
atmosphere/ocean state x; given data

Yu — {y17YQ7"'7yU}'

For filtering, use u = t; for smoothing, set u ="1T.

Particle filter allows time-sequential computation
of p(x¢|Y:), which is approximated by the N
weighted samples <X§n),p§ﬁ)), 1<n<N

(n)

0 to

p§|nT)' leaving the corresponding state samples

Xgn) untouched. The smoother weight update
accounts for the forward-looking dynamics.

Key computational step reweights p;"T) = ctpﬁﬁ)

where ¢; Is a function of p; 4 7.

Particle smoother rescales the weights p

p§|"T) can be computed backwards-sequentially as a

series of matrix multiplications on the weights.



Particle Filter: Usage Example

True xq...xp with data (noise o0 = 1)
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Main limitation is loss of diversity of particle set
under fast transitions




MCMC: Essential Idea

MCMC: A general way to approximate
expectations of any probability distribution

Specifically: Posterior mean, posterior clusters, or
the posterior probability density itself

For now, abbreviate p(x¢|y1,--.,yr) by 7(x)

MCMC is Monte Carlo integration...
1 N
Ef(X) = /f(a:)w(a:) de~ =Y f(z) (a; from m)
i=1

Typically x; are sampled independently but the
approximation works even for dependent x;

...driven by Markov chain samples

Craft a MC having «(-) as its stationary dist’'n
Draw the z;'s above from this MC
They are not independent, but they are from =

The sample average of f(x;) converges to Ef(X),
same as ensemble averages do (ergodicity)



MCMC: Metropolis-Hastings

One particular kind of MCMC uses the...

Metropolis-Hastings recipe

At some simulation epoch, the MC is at =
Draw a candidate 2’ from q(z'|z)
Replace x by the new z’ with probability

m(z’) q(z|a") )
' m(2) g2’ | z)

Under broad conditions, sample mean — Ef(X)
(rate of convergence is hard to assess)

p = min(l

Can use un-normalized versions of =« (-)

Acceptance probability p

Favors increasing the posterior, but allows w(z) to
decrease occasionally

Adjusts for any bias introduced by our choice of q



MCMC: Applied to Time Series

T he Bayes network for the time series shows
dependences among variables:

For now, suppose we only want to estimate x»
and other values are known

Apply Metropolis-Hastings recipe:
Propose a new value a:’2 e.g. from N(x2,5/<;2)
(¢(a5 | z2) is symmetric)

Compute the ratio

m(@) q(z|a’) _ plag|z1) p(z3|23)  ply2|a3)
m(@) (@’ |z)  plzz|z1) p(zzlz2)  ply2|z2)

Combines a smoothness term and a data term

The full MCMC scheme sweeps over all unknown
variables xq,...,xp, proposing changes to each



MCMC: Usage Example

True xq...xp with data (obs. noise o = 5)
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Two MCMC series (10%:10° downsampled 100:1)

Ex¢, o(xt), truth; p(z¢|y1-7), t =0.75,1.1,1.5

x(1
x(22
x(3

Note: skew distribution at ¢t = 1.5, multimodal
distribution at t =1.1



Dynamics: Double-Well aka DW

Particle in a potential well given by
f(z) = =222 + 2% and g(z) = (d/dz) f(x)

Two minima at =1 and one stationary point at O

Trivial climate: Miller et al., Eyink & Restrepo, ...

Observations cluster at £1, occasionally switching
state: highly non-Gaussian

Iwn by




Dynamics: Lorenz 1963 aka L63

We also use the trivariate Lorenz 1963 system:

21 = 10(xo — x1) "
Xxo =28x] —Tp — T1xT3 1w
r3 =z122 — (8/3)13

20 -20

In vector form, x; = —g(x¢) for g as above

For experiments, discretize DW and L63 in time:

x; = %1+ Ag(x_1) + Wi wy ~ N(0,k*Al)
Yt = Xt + V¢ vi ~ N(0, o°T)
Notation “~ N(u,R)" means “is Gaussian

distributed with mean vector u and covariance
matrix R"

y: IS the noisy observation



DW: Trajectory Estimates

(a) simulated trajectory ("truth") and observations
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Top: DW trajectory with sparse, noisy observations
(circles).

Middle: Mean trajectories from MCMC (2000 samples),
particle filter (N = 10%* particles), particle smoother

Bottom: Standard deviations std(x;) given the observations



DW: Nongaussian Posterior

(a) descending transisiton
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DVW: Small Ensembles

(a) N=100
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(c¢) N=100; 40 % inflated
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L eft: Same as above, using only N = 100

particles. Filter and

tracking

degrades relative to MCMC ground truth.
Right: N = 100, but the system noise k is
artificially inflated by 40%, restoring

performance.

This is one way to shrink the number of samples
for better computational characteristics



DW: Fixes for Small Ensembles

(a) mean RMS estimation error
T T T

state error

state variability

time index

Top: Estimation error for the smoother, varying
assumed system noise level k. Best k is 50%.

Bottom: Conditional variance std(x;) at this &
preserves many correct characteristics relative
to the N = 10% ensemble above.



L63: Particle Smoother Results

Variable “x1 "

Particle Filter

EnKF

Particle Smoother

Smoother on EnKF
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time

Each panel shows the L63 x7 variable (dotted
line) and its noisy observations (circles).

Solid lines show (from top to bottom) estimates
by RPF, EnKF, RPF-BSS, and EnKF-BSS.



Variable "x2"

Particle Filter

EnKF

Particle Smoother

Smoother on EnKF

26 28 30 32 34 36 38 40
time

As above, but showing the x5 variable, which is
not directly observed.

The particle filter (resp. smoother) significantly
outperforms the EnKF filter (resp. smoother)
in this highly nonlinear problem.

Furthermore, the ensemble-based smoothers have
considerably better tracking than the filters.



Variable x3
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L63: Ensemble Size and Bias
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-—x—Ensemble Kalman Filter (EnKF)
—&— Smoothed EnKF (EnKF + BSS)

RMS estimation error

0 50 100 150 200 250 300
Ensemble size (number of samples)

RMS estimation errors (averaged over 50 runs)
for L63 as ensemble size is varied.

For ensemble size below 20, EnKF outperforms
the nonparametric approaches (PF/PS).

Increasing ensemble size beyond ~30 does not
improve EnKF accuracy.

T his shows the price paid in estimator bias for
making the Gaussian assumption.



